由於難度高、實驗周期長、成本高,通過傳統方法觀測到的蛋白質三維結構,至今數量非常有限。相比之下,氨基酸測序容易得多。為什麼不能根據氨基酸序列來預測蛋白質的結構?早在1972年,美國生化學家克里斯蒂安·安芬森曾在諾貝爾獎的獲獎感言中提出這一設想。
從蛋白質的一級結構出發精準預測其三維結構,正是人工智能所擅長的。然而,人類試圖解析蛋白質組的工作進展緩慢。據解釋,這一方面因為現有的生物數據量小,質量不高,深度學習缺乏足夠的樣本;另一方面因為人工智能算法成熟也需要過程。
近些年,隨著生物數據劇增以及人工智能技術的優化,科學家建立起更精準的預測模型。2020年12月,在一場比賽中,人工智能程序“阿爾法折叠”大放異彩,它預測的結果與大多數實驗數據差不多。這證明,預測蛋白質結構,人工智能已經相當精準。
如今,借助人工智能,曾經可能耗時數年的工作,現在幾分鐘就能完成,還能解析傳統方法不能觀測到的一些蛋白質結構。
據瞭解,利用人工智能,科研人員預測出了約100萬個物種的超過2億種蛋白質的結構,涵蓋科學界已編錄的幾乎每一種蛋白質。這將對結構生物學領域產生重大影響,可能引發生命科學研究的範式變革,並提升人類對生命的理解。
前景廣闊,在生命科學等多領域發揮作用
人工智能進入生命科學研究的視野,生物醫藥行業的需求是重要推動力。據介紹,在生物制藥行業,每投入10億美元能夠研發出的藥物種類已不斷下降。新藥研發難度越來越大,周期越來越長,急需新方法突圍,人工智能被寄予厚望。
|